A Guide to Bucking Bar Material Selection

Introduction

In the realm of riveting applications, the bucking bar is an often-overlooked but critical component. This component is crafted from different materials, and these advanced materials can significantly impact its effectiveness, including absorbing vibrations and facilitating a secure, seamless riveting process.

Tungsten Bucking Bars

This guide explores the importance of bucking bar material selection. Hope that you can learn about key considerations for optimal performance in riveting applications.

Understanding the Role of Bucking Bars:

Bucking bars are also known as rivet sets. They serve as the counterforce in riveting operations. While the rivet gun drives the fastener into place, it ensures that the force is distributed evenly.

These devices prevent distortion of the workpiece and facilitate a strong, reliable joint. The bucking bar material directly influences its ability to absorb energy, resist wear, and deliver precision in rivet forming.

Common Bucking Bar Materials:

They come in a variety of materials. Each comes with its unique properties and advantages:

  • Steel: Traditional steel bucking bars stand out for their durability and relatively low cost. They come in various shapes and sizes to accommodate different rivet types. However, they can be heavy and may transmit vibrations more than some alternative materials.
  • Tungsten Alloy: Tungsten alloy bucking bars strike a balance between weight and durability. Their high-density composition allows for more compact designs without sacrificing effectiveness. They are particularly useful in applications where access space is limited.
  • Copper: Copper ones are favored for their softer nature, so they are suitable for preventing surface marring on delicate materials. While they may wear more quickly than steel or tungsten, their use is essential in situations where protecting the workpiece is paramount.
  • Lead: Lead components provide a non-marring option, especially in aerospace applications where surface damage is unacceptable. They are soft and deformable. They can ensure minimal impact on the workpiece while still effectively absorbing energy.

1.    Weight Considerations:

The weight of the bucking bar is a crucial factor in material selection as well:

  • Heavy-Duty Applications: In heavy-duty applications, such as construction or shipbuilding, maximum force is often required. Under these conditions, steel or tungsten alloy bucking bars are preferred due to their weight and durability.
  • Precision Work: For applications that demand precision and accessibility, tungsten or copper components offer a more manageable and wieldy option since they are lighter than steel.

2.    Vibrational Damping Properties:

Additionally, the ability of a bucking bar to absorb and dampen vibrations is vital for user comfort and safety:

  • Tungsten Alloy: W alloy is notable for its excellent vibrational damping properties. This alloy reduces the impact on the operator and leads to a more comfortable and controlled riveting experience.
  • Steel: While steel is durable and effective, it may transmit more vibrations compared to materials with better damping properties. It potentially leads to operator fatigue during prolonged use.

3.    Application-Specific Considerations:

Tailoring bucking bar material to the unique demands of the application is key:

  • Aerospace: Aerospace applications often require non-marring materials like copper or lead to prevent surface damage on sensitive materials, coupled with tungsten for its weight-to-size ratio.
  • Automotive: Steel or tungsten alloy bucking bars are commonly used in automotive assembly. They offer a balance between weight, durability, and cost-effectiveness.

4.    Maintenance and Wear Resistance:

Considering the wear characteristics of the material ensures longevity and reduces replacement frequency:

  • Steel: Steel comes with durability. Such bucking bars are resistant to wear and deformation. They have become suitable for high-volume production environments.
  • Copper and Lead: These softer materials are more prone to wear but excel in applications where preventing surface damage is crucial.

Conclusion:

In the world of riveting, the choice of bucking bar material is quite diverse. Impacting factors include weight, vibrational damping, wear resistance, and application-specific requirements. The optimal one strikes a balance between these factors, forging success in riveting applications by enhancing precision, durability, and user comfort.

As industries continue to evolve, the careful selection of bucking bar materials remains a critical element in achieving efficient and reliable riveting processes.

Advanced Refractory Metals (ARM) specializes in the manufacturing and distribution of top-notch tungsten bucking bars in diverse shapes and dimensions. ARM comes with over 20 years of experience and top-quality products. Send us an inquiry if you are interested.

Tungsten Alloys for Electronics: Features and Uses

Introduction

In the fast-evolving world of electronics, the demand for advanced materials is continuous. These materials can meet the challenges of miniaturization, durability, and efficient energy management.

Tungsten Alloy Powder

Tungsten alloys are notable for their exceptional properties. They have emerged as key players in the realm of electronic components. This article is going to discuss the features and uses of these alloys. Hope that you can learn about the development of these devices.

Properties of Tungsten Alloys

Tungsten alloys are typically composed of tungsten. They have other elements such as nickel, copper, or iron. Also, they possess a set of properties that make them uniquely suited for electronic applications.

Related reading: 3 Primary Uses Of Tungsten | The Applications Of Tungsten

1. High Density and Compact Size

Tungsten alloys boast an impressive density. This feature allows for the creation of compact yet heavy components. It is crucial in the manufacturing of small electronic devices, where space efficiency is paramount.

The high density of W alloys enables the miniaturization of components without compromising their performance. So, they become ideal for applications in smartphones, laptops, and other portable gadgets.

2. Excellent Electrical Conductivity

One of the primary reasons those alloys are sought after in electronics is their outstanding electrical conductivity. This property ensures efficient and reliable conduction of electrical currents.

That’s a critical requirement for components like connectors, switches, and various electronic contacts. The use of W alloys in these applications contributes to the overall performance and longevity of electronic devices.

3. Resistance to Wear and Corrosion

They exhibit remarkable resistance to wear and corrosion. In the dynamic environment of electronic devices, components are frequently in contact with each other or exposed to varying environmental conditions. And, such resistance is invaluable.

W alloy-coated components include connectors and switches. They can maintain their functions over extended periods. These components also enhance the durability of electronic devices.

4. High Melting Point and Thermal Conductivity

The high melting point of W alloys comes with their excellent thermal conductivity. Thus, they are suitable for applications where heat management is crucial.

Electronic devices often generate heat during operation, and these alloys help dissipate this heat efficiently, preventing overheating and ensuring the device’s optimal performance.

Applications in Electronics

Electronics

1. Microelectronics and Semiconductors

Tungsten alloys play a vital role in the manufacturing of microelectronics and semiconductors.

Their use as conductive materials is in integrated circuits and semiconductor devices. These parts help improve the overall efficiency and reliability of these components.

Their compatibility with semiconductor manufacturing processes further cements their importance in the electronics industry.

2. Connectors and Contacts

Connectors and contacts are critical components in electronic devices, and they promote the flow of electrical signals.

W alloys possess high electrical conductivity and resistance to wear. They are commonly employed in the production of these components.

Whether in intricate connectors for printed circuit boards or precision contacts within switches, these alloys contribute to the seamless functionality of electronic devices.

3. Electrical Contacts in Switchgear

Switchgear controls the flow of electricity in electrical power systems. It relies on materials that can withstand high electrical currents and provide reliable performance.

W alloys stand out for their robust electrical conductivity and durability. These alloys are frequently used in the production of electrical contacts for switchgear applications. They can ensure safe and efficient power distribution.

Related reading: Tungsten Contacts For Electrical Appliances

4. Electronic Packaging

W finds applications in electronic packaging, particularly in components like heat sinks and substrates.

The high thermal conductivity of tungsten alloys aids in efficiently dissipating heat generated by electronic components. So, they prevent thermal damage and maintain the device’s operational integrity.

Looking Ahead: Innovations and Advancements

As the electronics industry continues to push the boundaries of innovation, tungsten alloys are likely to play an increasingly pivotal role.

Ongoing research focuses on further enhancing the properties of tungsten alloys, exploring novel compositions and manufacturing techniques to meet the evolving demands.

Stanford Advanced Materials: A Leader in Tungsten Alloys for Electronics

In this landscape of electronic advancements, Stanford Advanced Materials (SAM) stands out as a leading supplier of high-quality tungsten alloys. SAM provides a diverse range of tungsten alloy products tailored to meet the specific needs of the electronics industry.

Conclusion

In a word, the unique properties of tungsten alloys include high density, excellent electrical conductivity, and resistance to wear. Thus, they are indispensable in the field of electronics. From microelectronics to switchgear, tungsten alloys contribute to the efficiency, durability, and miniaturization of electronic devices.

As technology continues to advance, the role of tungsten alloys in electronics is poised to expand, driving innovation and shaping the future of electronic components. For more information, please check our homepage.

Titanium Fastener VS. Stainless Steel Fastener

Let’s begin with some basic information.

As a tough and corrosion-resistant alloy, stainless steel has been used since the 20th century. It is composed of about 10.5% chrome and a variety of other elements, which include aluminum, carbon, nickel, molybdenum, nitrogen, sulfur, silicon, titanium, copper, and niobium. The chromium content contributes to its rust-resistance and heat-resistance features. Thanks to all these desirable properties, stainless steel fasteners and other stainless steel parts are widely employed in the construction, automotive, and medical industries.

electronics materials

Titanium is a light yet tough metal. Titanium fasteners have a low density of 4.5 g/cm3 and a high strength-to-weight ratio. The melting point of titanium is over 1650 °C and the boiling point is 3287 °C. So, the lustrous silvery metal is perfect for chemical appliances, aircraft skeletons, marine apparatus, and medical equipment.

Stainless Steel VS. Titanium: Corrosion Resistance

Both stainless steel fasteners and titanium fasteners are tough materials that could operate in harsh environments. However, these corrosion-resistant parts have different mechanisms.

Stainless steel fights against rusting with a thin and strong chromium oxide layer, which would regenerate quickly if it is damaged. The susceptibility of certain stainless steel varieties to corrosion depends on their chromium content. A higher proportion of chromium in the metal decreases the likelihood of rust formation. It should be mentioned that stainless steel is not resistant to all corrosive surroundings. Some chemical environments, for example, an aqueous environment containing chloride, may destroy this protective layer, and corrosion follows.

 

Similarly, titanium oxidizes and forms a thin layer on the surface to prevent the metal from further oxidation. Different from stainless steel, the layer adheres firmly to the metal surface, and will not degrade or peel off over time due to atmospheric exposure. It provides protection against a range of substances, such as organic acids, chloride solutions, and diluted forms of sulfuric and hydrochloric acids. Besides, titanium is a specialty metal with high corrosion resistance and physical stability. So, titanium fasteners possess higher corrosion resistance than stainless steel fasteners, and they are applied to extreme environments involving alkalis, acids, and other industrial chemicals.

 

In short, Titanium offers excellent corrosion resistance and mechanical stability, while stainless steel exhibits decent mechanical properties but lacks in corrosion resistance.

Stainless Steel VS. Titanium: Strength-to-Density Ratio

Strength-to-density ratio is another striking difference between stainless steel fasteners and titanium fasteners.

Titanium stands out for its strength-to-weight ratio. It has a density of 4.51g/cm³, which is much lower than steel of 7.8-8 g/cm3. In other words, titanium can provide the same amount of strength as steel at 40% of its weight. Such an excellent strength-to-density ratio makes titanium a desirable material to make planes, naval ships, space crafts, and missiles. You can also add aluminum, zirconium, and other elements to improve the properties of titanium parts.

Related reading: How Is Titanium Used In Aerospace/Aeronautics Applications?

Stainless Steel VS. Titanium: Biocompatibility

Both stainless steel bolts and titanium bolts are commonly used in the medical industry.

 

Because of good biocompatibility with human tissues and blood, titanium fasteners are typically employed to make heart stents, teeth implants, hip balls, and sockets in the human body. These apparatuses are also applied to make surgical instruments such as crutches and wheelchairs.

 

Stainless steel fasteners are not biocompatible and come with fewer uses. These devices are utilized to make operating tables and steam sterilizers in hygienic environments.

Related reading: Applications Of Titanium Materials In the Medical Industry

Stainless Steel VS. Titanium: How to Choose?

In a word, titanium fasteners are preferred by high-end industries like aerospace and the medical field because of better corrosion resistance, higher strength-to-density ratio, and good biocompatibility, while stainless steel fasteners are suitable for large-scale constructions that have fewer requirements on these properties.

 

Titanium products are popular in the aerospace industry which puts much more stress on weight than strength. They are also used in the dental and medical industries since titanium is biocompatible and nontoxic. Stainless steel has advantages over titanium when a large quantity is needed for construction. You’ll find stainless steel useful for its weldability and lower cost. At last, here is a table that provides a summary of the differences between stainless steel and titanium.

What is Tantalum Tungsten Alloy?

What is Tantalum Tungsten Alloy?

–Tungsten the Element

Tungsten the element (W, 74) is a Block D, Group 6, Period 6 metal element with an atomic weight of 183.84. It was found by Torbern Bergman in 1781. Tungsten has the highest melting point (3420℃) of all the metallic elements, and its density is about 1.7 times that of lead. This element is also famous for its high strength and melting point.

tantalum valuable

–Types of Tantalum Tungsten Alloy

The tantalum tungsten alloys have 3 variants according to their percentage of tungsten added. Ta2.5W, or tantaloy60, has 2.5% tungsten and 0.5% niobium. Ta7.5W, or tantaloy61, has 7.5% tungsten, while Ta10W possesses 10% tungsten and is also called tantaloy63. These alloys have a high melting point of 3005-3030 °C and a large density of 16.7-16.9 g/cm3.

–Tantalum Tungsten Alloy Applications

The application fields of tantalum tungsten alloys lie in the chemical processing industry and heater exchange industry. Similar to pure tantalum, these tantalum tungsten alloys keep useful features such as high melting point, tension resistance, and high corrosion resistance. An oxide layer is formed initially, and it is stable at temperatures below 260°C. This layer could stand strong hot acids like HCl and H2SO4. Because of great thermal conductivity, these alloys are also commonly found to make heat exchangers.

Comparison between Them

Pure tantalum and tantalum tungsten alloys have similarities and disparities in properties and application fields.

As for physical and chemical properties, pure metal and its alloys with tungsten content share some common points. They are strong materials withstanding high temperatures just like pure tantalum. More importantly, they have higher melting points and density, representing their higher strength. Here this article lists the detailed information as follows.

In terms of uses and applications, you can find them both used as chemical reaction pipes and heat changers. However, pure tantalum finds its special applications as capacitors and surgical implants. You’d better take budgets and efficiency into consideration since the tantalum tungsten alloy is a bit more costly but efficient than the pure tantalum.

Pure Tantalum VS. Tantalum Tungsten Alloy

What is Tantalum?

–Tantalum the Element

Tantalum the element (Ta, 73) is located in Block D, Group 5, Period 6 in the periodic table, and its atomic weight is 180.94788. This metal element was first discovered by Anders G. Ekeberg in 1802, yet pure tantalum was extracted by Werner von Bolton in 1903. Then, pure tantalum has been mainly mined from columbite-tantalite.

–Tantalum the Metal

Tantalum the metal is a typical refractory metal that is known for its high melting point and corrosion resistance. It looks lustrous gray-blue and has a melting point of 2980℃, which just falls after tungsten and rhenium. The density of pure tantalum is 16.4 g/cm3 and its elastic modulus is 185.7 GPa. All these figures indicate the thermal resistance and high strength of pure tantalum.

–Tantalum Applications

Because of these desirable mechanical and chemical properties, tantalum is applied to make lots of apparatus ranging from capacitors to reaction pipes.

First, nearly 50% to 70% pure tantalum contributes to the manufacturing of capacitors. A majority of capacitors are made from pure tantalum powers or wires. People choose this material because tantalum would form a passive oxide layer with dialectic strength. These capacitors could maintain ideal functions under high temperatures and high voltages. Additionally, tantalum capacitors are employed in the making of switches, mobile phones, fax machines, computers, automobiles, and even defense and military industries.

You can also find pure tantalum in the healthcare and medical field. Thanks to no immune response, the metal material is commonly used to make surgical implants. It can replace skull plates, connects torn nerves, or weaves abdominal muscle.

Pure tantalum could also be applied to make pipes for chemical reactions and heat exchangers for its unique corrosion and heat resistance ability. It can be generally found in the fields of aerospace and metallurgy.

What is Tantalum Tungsten Alloy?

–Tungsten the Element

Tungsten the element (W, 74) is a Block D, Group 6, Period 6 metal element with an atomic weight of 183.84. It was found by Torbern Bergman in 1781. Tungsten has the highest melting point (3420℃) of all the metallic elements, and its density is about 1.7 times that of lead. This element is also famous for its high strength and melting point.

–Types of Tantalum Tungsten Alloy

The tantalum tungsten alloys have 3 variants according to their percentage of tungsten added. Ta2.5W, or tantaloy60, has 2.5% tungsten and 0.5% niobium. Ta7.5W, or tantaloy61, has 7.5% tungsten, while Ta10W possesses 10% tungsten and is also called tantaloy63. These alloys have a high melting point of 3005-3030 °C and a large density of 16.7-16.9 g/cm3.

–Tantalum Tungsten Alloy Applications

The application fields of tantalum tungsten alloys lie in the chemical processing industry and heater exchange industry. Similar to pure tantalum, these tantalum tungsten alloys keep useful features such as high melting point, tension resistance, and high corrosion resistance. An oxide layer is formed on the surface and is stable at temperatures below 260°C. This layer could also stand strong hot acids like HCl and H2SO4. Because of great thermal conductivity, these alloys are also commonly found to make heat exchangers.

Comparison between Them

Pure tantalum and tantalum tungsten alloys have similarities and disparities in properties and application fields.

As for physical and chemical properties, pure tantalum metal and its alloys with tungsten content share some common points. Tantalum tungsten alloys are strong materials withstanding high temperatures just like pure tantalum. More importantly, they have higher melting points and density, representing their higher strength. Detailed information is listed as follows.

Table 1 Comparison between

Pure Tantalum and Tantalum Tungsten Alloy

  Ta W Ta2.5W Ta7.5W Ta10W
Melting Point (°C) 2980 3420 3005 3030 3025
Density (g/cm3) 16.4 19.24 16.7 16.8 16.8
Elastic Modulus (GPa) 185.7 N/A 195 205 200

In terms of uses and applications, you can find them both used as chemical reaction pipes and heat changers. However, pure tantalum finds its special applications as capacitors and surgical implants. You’d better take budgets and efficiency into consideration since the tantalum tungsten alloy is a bit more costly but efficient than the pure tantalum.

Is Tantalum The Same As Niobium?

What is tantalum?

Tantalum is a metal element, element symbol is Ta, its atomic number is 73, its density is 16.68g/cm, and its melting point is 2980 DEG C, which is the third most refractory metal. Pure tantalum has a blue color, and excellent ductility, and can be rolled into a very thin plate in the cold state without intermediate annealing.

tantalum

The corrosion resistance of tantalum is the same as that of glass. In the medium temperature (about 150 DEG C), only fluorine, hydrofluoric acid, sulfur trioxide, alkali, and some molten salts have an effect on tantalum. Tantalum is stable at room temperature, it will accelerate oxidation to produce Ta205 if heated to 500 DEG C.

Tantalum has a series of excellent properties such as high melting point, low vapor pressure, and cold processing performance, high chemical stability, anti-corrosion ability, constant liquid metal oxide film, has important applications in electronics, metallurgy, the chemical industry, iron and steel, hard alloy, atomic energy, superconducting technology, automotive electronics, aerospace, medical health and scientific research and other high-tech fields.
What is niobium?

What is Niobium?

Niobium is a rare high melting point metal. The melting point is 2467 degrees, the density is 8.6g/cm3, and the lattice type is body-centered cubic. The coefficient of linear expansion (0~100 C) is 7.1 x 10-6. Adding a small amount of niobium into a steel can greatly improve the strength of steel, improve the mechanical and welding properties of steel, and improve its corrosion resistance.

Niobium can be used as a capacitor and niobium-based superalloy. FS – 85 alloy is a structural material for the orbiting engine on the shuttle. C – 103 alloy can be used as a rocket nozzle material. Other niobium alloys, such as Nb – Zr, Nb – Ti, Nb – Ti – Ta, can be used as superconducting materials, and are widely used in magnetic resonance medical human images.

Niobium-based compounds and complexes can be used as catalysts to remove pollution, selective oxidation, and hydrogenation.

Is tantalum the same as niobium?

No. Tantalum and niobium are transition metals that are commonly found together in nature. They have very similar physical and chemical properties. Their properties of hardness, conductivity, and resistance to corrosion largely determine their primary uses today.
The reason for the similarity between niobium and tantalum is the size which is the result of the lanthanide contraction. Thus, the niobium and tantalum have the same size and due to the same size, tantalum and niobium have the same ionic and covalent radii.

Conclusion

Tantalum is chemically much like niobium because both have similar electronic configurations and because the radius of the tantalum ion is nearly the same as that of niobium as a result of the lanthanoid contraction. Niobium is a lustrous, gray, ductile metal with a high melting point, relatively low density, and superconductor properties. Tantalum is a dark blue-gray, dense, ductile, very hard, and easily fabricated metal. It is highly conductive to heat and electricity and renowned for its resistance to acidic corrosion.

Stanford Advanced Materials produce our tantalum products from the metal powder to the finished product. We only use the purest tantalum powder as the source material. This is how we can guarantee you a very high material purity.
We guarantee a purity of 99.95% for our sintered quality tantalum (metallic purity without Nb). The remaining portion is made up primarily of the following elements according to a chemical analysis:

Element Typical max. value
[μg/g]
Guaranteed max. value
[μg/g]
Fe 17 50
Mo 10 50
Nb 10 100
Ni 5 50
Si 10 50
Ti 1 10
W 20 50
C 11 50
H 2 15
N 5 50
O 81 150
Cd 5 10
Hg 1
Pb 5 10

Is Tantalum More Strong Than Tungsten?

What is tantalum?

Tantalum, a metallic element, is found mainly in tantalite and is symbiotic with niobium. Tantalum is moderately hard, and ductile and can be drawn into thin foil in the form of filaments. Its coefficient of thermal expansion is very small.

Tantalum has excellent chemical properties and is extremely resistant to corrosion. Although tantalum is highly resistant to corrosion, its corrosion resistance is due to the generation of a stable protective film of tantalum pentoxide (Ta2O5) on the surface. It does not react to hydrochloric acid or concentrated nitric acid, either under cold or hot conditions.

It can be used to make evaporating vessels, etc. It can also be used as electrodes for electronic tubes, rectifiers, and electrolytic capacitors. It is also used in medical treatment to make thin sheets or threads to mend damaged tissues.

An Overview of Ta Element

Chemical symbol Ta, gray metal, in the periodic table belongs to the VB group, atomic number 73, atomic weight 180.9479, body-centered cubic crystal, common chemical compound valence +5.

What is tungsten?

Tungsten (W) is one of the so-called transition metals with the atomic number 74. The shiny gray metal is in a solid state at room temperature.

Tungsten is characterized by special physical and chemical properties:
• Heat resistance: After carbon, tungsten has the highest melting point of all elements at 3422°C. It has a boiling point of around 5,700°C. With these properties, the metal can withstand high temperatures and smelting and in addition, has a very low coefficient of thermal expansion
• Density: 19.3 g/cm³; the density of tungsten is almost as high as that of gold in its pure state.
We prepare our tungsten to perform perfectly in its specific applications. We can determine the following properties through the addition of various alloys
• Machinability (such as cutting processes, formability, weldability)
• Microstructure and recrystallization behavior (recrystallization temperature, embrittlement, aging effects)
• Resistance: Tungsten also has high resistance to acids. Even hydrofluoric acid and aqua regia are hardly able to attack tungsten at room temperature
• Physical properties (such as melting point, vapor pressure, density, electrical conductivity, thermal conductivity, thermal expansion, heat capacity, and electron work function)
• Mechanical properties (such as strength, fracture behavior, creep resistance, and ductility)
• Chemical properties (corrosion resistance)

Is tantalum more strong than tungsten?

Tantalum is highly resistant to scratches and breakage and is extremely durable. Tantalum is therefore resistant to corrosion, and only if exposed to hydrofluoric acid it can corrode.

Unlike metals, such as tungsten, it is also shatterproof. This makes it great for individuals who lead active lives with busy hands.