Pure Tantalum VS. Tantalum Tungsten Alloy

What is Tantalum?

–Tantalum the Element

Tantalum the element (Ta, 73) is located in Block D, Group 5, Period 6 in the periodic table, and its atomic weight is 180.94788. This metal element was first discovered by Anders G. Ekeberg in 1802, yet pure tantalum was extracted by Werner von Bolton in 1903. Then, pure tantalum has been mainly mined from columbite-tantalite.

–Tantalum the Metal

Tantalum the metal is a typical refractory metal that is known for its high melting point and corrosion resistance. It looks lustrous gray-blue and has a melting point of 2980℃, which just falls after tungsten and rhenium. The density of pure tantalum is 16.4 g/cm3 and its elastic modulus is 185.7 GPa. All these figures indicate the thermal resistance and high strength of pure tantalum.

–Tantalum Applications

Because of these desirable mechanical and chemical properties, tantalum is applied to make lots of apparatus ranging from capacitors to reaction pipes.

First, nearly 50% to 70% pure tantalum contributes to the manufacturing of capacitors. A majority of capacitors are made from pure tantalum powers or wires. People choose this material because tantalum would form a passive oxide layer with dialectic strength. These capacitors could maintain ideal functions under high temperatures and high voltages. Additionally, tantalum capacitors are employed in the making of switches, mobile phones, fax machines, computers, automobiles, and even defense and military industries.

You can also find pure tantalum in the healthcare and medical field. Thanks to no immune response, the metal material is commonly used to make surgical implants. It can replace skull plates, connects torn nerves, or weaves abdominal muscle.

Pure tantalum could also be applied to make pipes for chemical reactions and heat exchangers for its unique corrosion and heat resistance ability. It can be generally found in the fields of aerospace and metallurgy.

What is Tantalum Tungsten Alloy?

–Tungsten the Element

Tungsten the element (W, 74) is a Block D, Group 6, Period 6 metal element with an atomic weight of 183.84. It was found by Torbern Bergman in 1781. Tungsten has the highest melting point (3420℃) of all the metallic elements, and its density is about 1.7 times that of lead. This element is also famous for its high strength and melting point.

–Types of Tantalum Tungsten Alloy

The tantalum tungsten alloys have 3 variants according to their percentage of tungsten added. Ta2.5W, or tantaloy60, has 2.5% tungsten and 0.5% niobium. Ta7.5W, or tantaloy61, has 7.5% tungsten, while Ta10W possesses 10% tungsten and is also called tantaloy63. These alloys have a high melting point of 3005-3030 °C and a large density of 16.7-16.9 g/cm3.

–Tantalum Tungsten Alloy Applications

The application fields of tantalum tungsten alloys lie in the chemical processing industry and heater exchange industry. Similar to pure tantalum, these tantalum tungsten alloys keep useful features such as high melting point, tension resistance, and high corrosion resistance. An oxide layer is formed on the surface and is stable at temperatures below 260°C. This layer could also stand strong hot acids like HCl and H2SO4. Because of great thermal conductivity, these alloys are also commonly found to make heat exchangers.

Comparison between Them

Pure tantalum and tantalum tungsten alloys have similarities and disparities in properties and application fields.

As for physical and chemical properties, pure tantalum metal and its alloys with tungsten content share some common points. Tantalum tungsten alloys are strong materials withstanding high temperatures just like pure tantalum. More importantly, they have higher melting points and density, representing their higher strength. Detailed information is listed as follows.

Table 1 Comparison between

Pure Tantalum and Tantalum Tungsten Alloy

  Ta W Ta2.5W Ta7.5W Ta10W
Melting Point (°C) 2980 3420 3005 3030 3025
Density (g/cm3) 16.4 19.24 16.7 16.8 16.8
Elastic Modulus (GPa) 185.7 N/A 195 205 200

In terms of uses and applications, you can find them both used as chemical reaction pipes and heat changers. However, pure tantalum finds its special applications as capacitors and surgical implants. You’d better take budgets and efficiency into consideration since the tantalum tungsten alloy is a bit more costly but efficient than the pure tantalum.

Is Tantalum The Same As Niobium?

What is tantalum?

Tantalum is a metal element, element symbol is Ta, its atomic number is 73, its density is 16.68g/cm, and its melting point is 2980 DEG C, which is the third most refractory metal. Pure tantalum has a blue color, and excellent ductility, and can be rolled into a very thin plate in the cold state without intermediate annealing.


The corrosion resistance of tantalum is the same as that of glass. In the medium temperature (about 150 DEG C), only fluorine, hydrofluoric acid, sulfur trioxide, alkali, and some molten salts have an effect on tantalum. Tantalum is stable at room temperature, it will accelerate oxidation to produce Ta205 if heated to 500 DEG C.

Tantalum has a series of excellent properties such as high melting point, low vapor pressure, and cold processing performance, high chemical stability, anti-corrosion ability, constant liquid metal oxide film, has important applications in electronics, metallurgy, the chemical industry, iron and steel, hard alloy, atomic energy, superconducting technology, automotive electronics, aerospace, medical health and scientific research and other high-tech fields.
What is niobium?

What is Niobium?

Niobium is a rare high melting point metal. The melting point is 2467 degrees, the density is 8.6g/cm3, and the lattice type is body-centered cubic. The coefficient of linear expansion (0~100 C) is 7.1 x 10-6. Adding a small amount of niobium into a steel can greatly improve the strength of steel, improve the mechanical and welding properties of steel, and improve its corrosion resistance.

Niobium can be used as a capacitor and niobium-based superalloy. FS – 85 alloy is a structural material for the orbiting engine on the shuttle. C – 103 alloy can be used as a rocket nozzle material. Other niobium alloys, such as Nb – Zr, Nb – Ti, Nb – Ti – Ta, can be used as superconducting materials, and are widely used in magnetic resonance medical human images.

Niobium-based compounds and complexes can be used as catalysts to remove pollution, selective oxidation, and hydrogenation.

Is tantalum the same as niobium?

No. Tantalum and niobium are transition metals that are commonly found together in nature. They have very similar physical and chemical properties. Their properties of hardness, conductivity, and resistance to corrosion largely determine their primary uses today.
The reason for the similarity between niobium and tantalum is the size which is the result of the lanthanide contraction. Thus, the niobium and tantalum have the same size and due to the same size, tantalum and niobium have the same ionic and covalent radii.


Tantalum is chemically much like niobium because both have similar electronic configurations and because the radius of the tantalum ion is nearly the same as that of niobium as a result of the lanthanoid contraction. Niobium is a lustrous, gray, ductile metal with a high melting point, relatively low density, and superconductor properties. Tantalum is a dark blue-gray, dense, ductile, very hard, and easily fabricated metal. It is highly conductive to heat and electricity and renowned for its resistance to acidic corrosion.

Stanford Advanced Materials produce our tantalum products from the metal powder to the finished product. We only use the purest tantalum powder as the source material. This is how we can guarantee you a very high material purity.
We guarantee a purity of 99.95% for our sintered quality tantalum (metallic purity without Nb). The remaining portion is made up primarily of the following elements according to a chemical analysis:

Element Typical max. value
Guaranteed max. value
Fe 17 50
Mo 10 50
Nb 10 100
Ni 5 50
Si 10 50
Ti 1 10
W 20 50
C 11 50
H 2 15
N 5 50
O 81 150
Cd 5 10
Hg 1
Pb 5 10

Is Tantalum More Strong Than Tungsten?

What is tantalum?

Tantalum, a metallic element, is found mainly in tantalite and is symbiotic with niobium. Tantalum is moderately hard, and ductile and can be drawn into thin foil in the form of filaments. Its coefficient of thermal expansion is very small.

Tantalum has excellent chemical properties and is extremely resistant to corrosion. Although tantalum is highly resistant to corrosion, its corrosion resistance is due to the generation of a stable protective film of tantalum pentoxide (Ta2O5) on the surface. It does not react to hydrochloric acid or concentrated nitric acid, either under cold or hot conditions.

It can be used to make evaporating vessels, etc. It can also be used as electrodes for electronic tubes, rectifiers, and electrolytic capacitors. It is also used in medical treatment to make thin sheets or threads to mend damaged tissues.

An Overview of Ta Element

Chemical symbol Ta, gray metal, in the periodic table belongs to the VB group, atomic number 73, atomic weight 180.9479, body-centered cubic crystal, common chemical compound valence +5.

What is tungsten?

Tungsten (W) is one of the so-called transition metals with the atomic number 74. The shiny gray metal is in a solid state at room temperature.

Tungsten is characterized by special physical and chemical properties:
• Heat resistance: After carbon, tungsten has the highest melting point of all elements at 3422°C. It has a boiling point of around 5,700°C. With these properties, the metal can withstand high temperatures and smelting and in addition, has a very low coefficient of thermal expansion
• Density: 19.3 g/cm³; the density of tungsten is almost as high as that of gold in its pure state.
We prepare our tungsten to perform perfectly in its specific applications. We can determine the following properties through the addition of various alloys
• Machinability (such as cutting processes, formability, weldability)
• Microstructure and recrystallization behavior (recrystallization temperature, embrittlement, aging effects)
• Resistance: Tungsten also has high resistance to acids. Even hydrofluoric acid and aqua regia are hardly able to attack tungsten at room temperature
• Physical properties (such as melting point, vapor pressure, density, electrical conductivity, thermal conductivity, thermal expansion, heat capacity, and electron work function)
• Mechanical properties (such as strength, fracture behavior, creep resistance, and ductility)
• Chemical properties (corrosion resistance)

Is tantalum more strong than tungsten?

Tantalum is highly resistant to scratches and breakage and is extremely durable. Tantalum is therefore resistant to corrosion, and only if exposed to hydrofluoric acid it can corrode.

Unlike metals, such as tungsten, it is also shatterproof. This makes it great for individuals who lead active lives with busy hands.