Harnessing the Power: Tantalum Oxide Powder’s Contribution to Advanced Electronics

Introduction

In the ever-evolving landscape of electronics, the quest for smaller, faster, and more efficient components is unending. Tantalum oxide powder, a material often hidden behind the scenes, is emerging as a key player in this pursuit. In this article, we delve into the world of tantalum oxide powder, exploring its remarkable characteristics and the pivotal role it plays in shaping the future of electronic technology.

Tantalum Oxide Powder

Understanding Tantalum Oxide Powder

Tantalum oxide often denoted as Ta₂O₅ is a compound composed of tantalum and oxygen atoms. It presents itself as a fine white powder with a range of unique characteristics:

  • High Dielectric Constant: Ta₂O₅ boasts a high dielectric constant, making it an excellent material for capacitors. Capacitors built with such powder can store more charge in a smaller space, enabling the miniaturization of electronic devices.
  • Stability: Ta₂O₅ exhibits exceptional stability, both chemically and thermally. This stability ensures the reliability of electronic components even under harsh conditions.
  • Low Leakage Current: Ta₂O₅ capacitors have low leakage currents, which means they retain stored charge efficiently, reducing energy loss and improving the efficiency of electronic devices.
  • Miniaturization: Its properties allow for the creation of smaller and more efficient electronic components, a crucial factor in the development of compact and high-performance devices.

Applications in Advanced Electronics

Tantalum oxide powder’s impact on advanced electronics is substantial:

  • Capacitors: Ta₂O₅ capacitors are fundamental components in electronics, used in devices such as smartphones, laptops, and medical equipment. They provide high capacitance in a small footprint, a critical factor in modern miniaturized electronics.
  • Semiconductors: Ta₂O₅ plays a role in semiconductor manufacturing, where it acts as an insulating layer and gate dielectric material in advanced transistors.
  • Memory Devices: In non-volatile memory devices, tantalum oxide is employed to create high-performance, low-power storage solutions.

Related reading: Is Tantalum Oxide A Semiconductor?

Challenges and Future

While tantalum oxide powder holds immense promise, challenges include the sourcing of tantalum, which is a relatively rare element. However, research continues into sustainable and efficient production methods to ensure a stable supply.

Conclusion

In a word, tantalum oxide powder is an unsung hero in the world of advanced electronics. Its unique characteristics drive innovation, enabling the development of smaller, more efficient, and more powerful electronic devices. As the electronics industry continues to evolve, tantalum oxide powder will remain a pivotal ingredient in the recipe for progress, shaping the future of electronic technology.

Tantalum oxide powder is on sale at Stanford Advanced Materials (SAM). A variety of tantalum compounds including Tantalum Carbide PowderTantalum Silicide PowderCapacitor Grade Tantalum Powder, and Metallurgical Grade Tantalum Powder are also available. Send us an inquiry if you are interested.

Comparing Tantalum Powder with Alternative Materials

Introduction

Tantalum is a rare and highly corrosion-resistant metal, and its powdered form offers unique advantages that set it apart from alternative materials. In this article, we will explore the characteristics of Tantalum Powder and how it compares to other materials commonly used in industries such as aerospace, electronics, and chemical processing.

Tantalum Powder

Tantalum: A Brief Overview

Tantalum is a transition metal with the atomic number 73, known for its remarkable corrosion resistance, high melting point (approximately 3,020°C or 5,468°F), and excellent conductivity of heat and electricity. These properties make it an ideal candidate for a wide range of applications, especially in harsh environments.

Advantages of Tantalum Powder

Tantalum Powder, derived from the rare metal tantalum, possesses a unique set of advantages that make it a valuable material in various industrial applications. Here are some key benefits:

  • Corrosion Resistance: Tantalum is renowned for its resistance to corrosion by acids, including sulfuric, hydrochloric, and nitric acids. This property is a game-changer in industries where exposure to corrosive substances is a concern.
  • High Melting Point: Tantalum’s exceptionally high melting point makes it suitable for applications involving extreme temperatures, such as aerospace components and superalloys.
  • Biocompatibility: Tantalum is biocompatible, and it is an excellent choice for medical implants and devices.
  • Excellent Ductility: Tantalum can be easily fabricated into various shapes and forms, making it versatile for manufacturing.
  • Low Thermal Expansion: Its low coefficient of thermal expansion ensures dimensional stability at temperature variations.

Comparing Tantalum Powder with Alternative Materials

Therefore, this highly specialized material is set apart from other materials because of several distinctive characteristics. Here’s a comparison between Tantalum Powder and some other commonly used materials:

  1. Tantalum vs. Titanium: Titanium is another corrosion-resistant metal commonly used in aerospace and medical industries. While titanium is lighter than tantalum, it is not as resistant to certain aggressive chemicals.
  2. Tantalum vs. Stainless Steel: Stainless steel is less expensive and more readily available than tantalum, but it may not withstand the same harsh environments as tantalum. Tantalum outperforms stainless steel in applications involving highly corrosive substances.
  3. Tantalum vs. Niobium: Tantalum and niobium are often used together because of their similar properties and their ability to form alloys. Yet, tantalum has a higher density and better resistance to corrosion.
  4. Tantalum vs. Alloys: Various alloys, such as Hastelloy and Inconel, are used in chemical processing due to their corrosion resistance. However, these alloys may not match tantalum’s level of resistance to all corrosive agents.

Conclusion

Tantalum Powder stands out as a versatile and reliable material in industries that demand corrosion resistance, high-temperature stability, and biocompatibility. And it outperforms alternative materials thanks to its impressive corrosion resistance. As technology advances and new applications emerge, it is likely to continue playing a pivotal role in various high-performance industries. Stanford Advanced Materials (SAM) provides various kinds of tantalum products. Send us an inquiry if you are interested.

Tantalum Powder: A Sustainable Solution for a Greener Future

Introduction

In a world increasingly focused on sustainability and environmental responsibility, Tantalum Powder stands out as a remarkable and eco-friendly material. This article explores how it is contributing to sustainability efforts across diverse industries and paving the way for a more environmentally conscious world. Hope that you can have a better understanding.

Tantalum Powder

1. Renewable Energy: Efficient Energy Storage

Tantalum Capacitors are vital components in energy-efficient technologies, including renewable energy systems. They enable efficient energy storage and distribution in solar panels, wind turbines, and electric vehicles, helping reduce our dependence on fossil fuels and lower greenhouse gas emissions.

2. Electronics: Longevity and Efficiency

Tantalum Capacitors’ durability and reliability extend the lifespan of electronic devices, reducing electronic waste. Their small size and high performance also contribute to energy-efficient electronics, aligning with sustainability goals.

3. Aerospace and Transportation: Fuel Efficiency

Tantalum’s lightweight and high-temperature resistance properties contribute to fuel-efficient aerospace components and transportation systems, reducing energy consumption and emissions during travel.

4. Medical Advancements: Biocompatible Implants

Tantalum’s biocompatibility and corrosion resistance make it a sustainable choice for medical implants. Longer-lasting implants mean fewer replacements and less medical waste.

5. Recycling and Circular Economy: Resource Conservation

Tantalum is highly recyclable. Promoting recycling efforts in the tantalum industry contributes to a circular economy, reducing the need for new tantalum mining and minimizing its environmental footprint.

6. Conflict-Free Sourcing: Ethical Mining

The tantalum industry has made strides in avoiding the use of conflict minerals. Ethical mining practices ensure that tantalum is sourced responsibly and without contributing to conflicts in resource-rich regions.

Conclusion

Tantalum Powder represents a sustainable solution for a greener future, aligning with global efforts to reduce environmental impact and combat climate change. Its applications in renewable energy, electronics, aerospace, and healthcare, coupled with its recyclability and ethical sourcing practices, make tantalum an essential element in the transition toward a more sustainable and eco-conscious world. As we continue to advance technologically and environmentally, tantalum’s role in shaping a greener future cannot be overstated.

Advanced Refractory Metal (ARM) provides a variety of Tantalum Powders. Send us an inquiry if you are interested.

How Tantalum Powder Is Revolutionizing the Electronics Industry

Introduction

Tantalum Powder is making waves as a revolutionary force in the electronics industry, redefining how devices are designed, manufactured, and operated. Its unique properties are transforming various aspects of electronics, from miniaturization to energy storage and beyond. This article is going to discuss how it is used in the electronics industry. Hope it could give you a better comprehension of its features and applications.

Tantalum Powder

Miniaturization and Efficiency

One of the most impactful ways Tantalum Powder is revolutionizing electronics is by enabling the miniaturization of components. Its high melting point and excellent thermal conductivity make it suitable for crafting intricate and compact designs. As electronic devices become smaller and more powerful, this powder facilitates the creation of efficient and densely packed circuits that deliver optimal performance in limited space.

Capacitor Advancements

Tantalum Capacitors, vital components in electronic devices, have witnessed a significant leap in performance due to Tantalum Powder. These capacitors boast high capacitance-to-volume ratios, allowing them to store more energy in a smaller footprint. This efficiency translates to longer battery life, faster charging, and improved overall device performance. Tantalum capacitors also exhibit low equivalent series resistance (ESR), reducing energy losses and heat generation.

Tantalum Capacitors

Energy Storage Breakthroughs

The electronics industry is increasingly focused on energy storage solutions, and Tantalum Powder is at the forefront of these advancements. It’s a key material in the development of supercapacitors, offering high energy density, rapid charge and discharge rates, and exceptional cycle life. This opens up new avenues for energy-efficient electronics, renewable energy integration, and electric vehicle technologies.

Reliability and Longevity

Tantalum Powder’s remarkable resistance to corrosion ensures the longevity and reliability of electronic components, especially in harsh environments. This is crucial for aerospace, automotive, and industrial applications where electronic systems must operate flawlessly under extreme conditions.

Sustainability and Ethical Sourcing

Sustainability lies at the heart of Tantalum Powder’s role in the electronics industry. As a conflict-free and responsibly sourced material, it aligns with the industry’s growing emphasis on ethical supply chains.

Conclusion

In essence, Tantalum Powder is spearheading a transformation in the electronics industry. By enabling miniaturization, enhancing capacitor performance, facilitating energy storage breakthroughs, ensuring reliability, and promoting sustainability, it’s shaping a future where electronics are more efficient, powerful, and environmentally conscious than ever before.

Advanced Refractory Metal (ARM) provides capacitor tantalum, metallurgical tantalum, voltage tantalum powder, and spherical tantalum powder. Send us an inquiry if you are interested.

The Essential Uses of Tantalum Powder in Modern Industries

Tantalum, a rare and valuable metal, has found a multitude of applications across various industries due to its exceptional properties. One of the most common forms of tantalum used in industrial processes is tantalum powder. This fine powder, composed of tiny tantalum particles, plays a crucial role in numerous modern industries. From electronics to healthcare, tantalum powder has become an essential material in shaping the advancements of our society.

tantalum capacitors

Electronics Industry:

The electronics industry heavily relies on tantalum powder for the production of capacitors, which are fundamental components of electronic devices. Tantalum capacitors offer high capacitance and excellent reliability, making them indispensable in applications that require small size, high performance, and long-term stability. Tantalum powder is used to create the conductive material within these capacitors, enabling efficient energy storage and discharge. The demand for tantalum powder continues to rise as the electronics industry expands and new technologies emerge.

Aerospace and Defense:

Tantalum’s unique properties make it a sought-after material in the aerospace and defense sectors. Tantalum powder is used in the production of turbine blades, rocket nozzles, and other critical components of aircraft engines. Its high melting point, excellent corrosion resistance, and ability to withstand extreme temperatures make tantalum powder an ideal choice for these applications. Additionally, tantalum is non-reactive with bodily fluids, making it valuable for the manufacture of surgical instruments and implants used in the medical field.

Chemical Processing:

Tantalum powder finds extensive use in the chemical industry, particularly in processes involving corrosive materials. Its resistance to corrosion by acids and other aggressive chemicals makes it highly suitable for applications such as heat exchangers, reactor vessels, and tantalum pipes. Tantalum’s inertness and stability allow it to withstand harsh conditions and prevent contamination or damage to the chemicals being processed. Furthermore, tantalum’s ability to form a protective oxide layer on its surface adds an extra layer of protection against chemical reactions.

Energy Sector:

As the demand for clean and sustainable energy increases, tantalum powder plays a vital role in the production of advanced energy systems. Tantalum-based materials are employed in the fabrication of high-temperature superconductors, which have the potential to revolutionize power transmission and electrical energy storage. Additionally, tantalum powder is used in the production of electrodes for electrochemical capacitors (supercapacitors) and lithium-ion batteries, enhancing their energy storage capabilities and overall performance.

Medical Applications:

Tantalum’s biocompatibility and resistance to corrosion have made it a valuable material in the medical field. Tantalum powder is used to create implants, such as hip and knee replacements, that can withstand the harsh conditions of the human body while promoting bone growth. Its unique properties also make it suitable for dental applications, where it is used in the fabrication of dental crowns and bridges. Tantalum’s radiopacity is another advantageous characteristic, allowing for clear imaging during medical procedures.

In conclusion, tantalum powder has become an indispensable material across multiple industries, contributing to advancements in electronics, aerospace, defense, chemical processing, energy, and healthcare. Its exceptional properties, including high melting point, corrosion resistance, biocompatibility, and conductivity, have made it an ideal choice for various critical applications. As technology continues to advance, tantalum powder will likely remain a crucial component in driving innovation and shaping the future of modern industries.

 

Unlocking the Potential of Tantalum Powder: A Comprehensive Guide

Introduction

Tantalum powder, a unique and versatile material, holds immense potential in various industries. It is exceptional properties and wide range of applications make it a sought-after choice for advanced technologies. In this comprehensive guide, we will delve into the world of tantalum powder, exploring its characteristics, applications, and the transformative impact it has on modern industries.

Understanding Tantalum Powder

Tantalum powder is a fine, metallic substance derived from tantalum, a rare and highly corrosion-resistant element. We’ll explore its composition, physical and chemical properties, and how these properties contribute to its exceptional performance in various applications.

Applications in Electronics

Tantalum powder plays a crucial role in the electronics industry. We’ll discover how tantalum capacitors, known for their high capacitance and reliability, have become a staple in electronic devices such as smartphones, computers, and automotive electronics. We’ll also explore tantalum’s presence in thin-film resistors, semiconductors, and other electronic components.

metal additive

Tantalum Powder in Aerospace and Defense

The aerospace and defense sectors benefit greatly from tantalum powder. Its high melting point, excellent strength, and corrosion resistance make it ideal for aircraft and rocket engine components, turbine blades, and armor plating. We’ll uncover tantalum’s contribution to the advancement of these industries.

Medical and Biotechnology Applications

Tantalum powder finds extensive use in medical and biotechnology fields. We’ll examine its biocompatibility, radiopacity, and non-toxic nature, which make it suitable for implants, dental applications, and medical imaging devices. We’ll also explore tantalum’s potential in drug delivery systems and tissue engineering.

Industrial Applications and Beyond

Beyond electronics and healthcare, tantalum powder plays a crucial role in diverse industries. We’ll discover its use in chemical processing equipment, corrosion-resistant coatings, superalloys for jet engines, and even in nuclear applications. We’ll also explore tantalum’s potential in emerging fields such as energy storage and 3D printing.

Sustainability and Responsible Mining

As we unlock tantalum powder’s potential, we must also address its sourcing and environmental impact. We’ll delve into responsible mining practices, recycling efforts, and initiatives to ensure the sustainable use of tantalum resources.

Conclusion

Tantalum powder has emerged as a game-changing material with vast potential across numerous industries. Its unique combination of properties, ranging from corrosion resistance and high melting point to biocompatibility, make it a prized asset in advanced technologies. By understanding its capabilities and applications, we can harness its full potential while ensuring responsible sourcing and sustainability.

In this comprehensive guide, we’ve explored tantalum powder’s versatility and its impact on the electronics, aerospace, medical, and industrial sectors. As we continue to unlock its potential, tantalum powder will undoubtedly shape the future of technology and contribute to advancements that benefit society as a whole.

Remember to stay updated on the latest developments in tantalum powder technology, as it continues to evolve and expand its boundaries. Together, let’s embrace the potential of tantalum powder and pave the way for a brighter and more innovative future.

For more info, please visit: https://www.samaterials.com/

What is Tantalum Chloride Used For?

Tantalum chloride, also known by its chemical formula TaCl5, is a versatile compound with various applications in different industries. Tantalum itself is a rare and valuable metal known for its exceptional corrosion resistance and high melting point, and tantalum chloride is one of the primary forms in which tantalum is used. In this article, we will explore the properties and uses of tantalum chloride.

tantalum powder

Properties of Tantalum Chloride:

Tantalum chloride is a white, crystalline solid that is highly soluble in common organic solvents like ethanol and ether. It has a high boiling point and emits toxic fumes when exposed to air. Tantalum chloride is moisture sensitive and reacts with water to produce hydrochloric acid and tantalum oxide, which makes it important to handle with care.

Uses of Tantalum Chloride:

Chemical Synthesis and Catalysts:

Tantalum chloride serves as a precursor in the synthesis of various tantalum compounds. It is used to produce tantalum pentoxide (Ta2O5), which finds applications in the electronics industry as a high-k dielectric material in capacitors. Tantalum chloride is also employed as a catalyst in organic reactions, such as the Friedel-Crafts acylation and alkylation reactions, due to its Lewis acid properties.

Semiconductor Industry:

The semiconductor industry extensively utilizes tantalum chloride for the deposition of thin tantalum films. These films are crucial for the fabrication of high-performance integrated circuits and other electronic devices. Tantalum chloride, in combination with other precursors, is employed in chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes to create uniform and conformal tantalum layers on semiconductor substrates.

Surface Treatment:

Tantalum chloride is used in surface treatment applications, particularly for the modification of metals. It can be employed as a corrosion inhibitor and protective coating on steel and other metals, enhancing their resistance to chemical attack and increasing their lifespan. Tantalum chloride is also utilized as a surface modifier for materials like glass, imparting unique properties such as hydrophobicity or increased adhesion.

Organic Synthesis and Pharmaceuticals:

The Lewis acid nature of tantalum chloride makes it valuable in various organic synthesis reactions. It can be used as a catalyst or reagent in processes such as hydroamination, hydroaminoalkylation, and carbonylation. Additionally, tantalum chloride is utilized in the pharmaceutical industry for the production of tantalum-based drugs and diagnostic agents. Its unique properties enable the creation of compounds with specific interactions and properties that are beneficial for medical applications.

Research and Development:

Tantalum chloride is an important tool in scientific research and development. It is used as a starting material for the synthesis of new tantalum compounds and for investigating their properties. Researchers also employ tantalum chloride in the study of various chemical reactions and as a precursor for the preparation of novel materials with desirable characteristics.

Safety Considerations:

While tantalum chloride has significant industrial applications, it is important to handle it with caution due to its hazardous nature. Tantalum chloride releases toxic fumes when exposed to air, and direct contact with the compound can cause severe burns. It should be stored and handled in a well-ventilated area, with appropriate personal protective equipment such as gloves and goggles. Proper disposal methods must be followed to prevent environmental contamination.

In conclusion, tantalum chloride plays a vital role in various industries due to its unique properties and versatility. Its applications range from chemical synthesis and catalysts to the semiconductor industry, surface treatment, organic synthesis, and pharmaceuticals.

Is Tantalum The Same As Niobium?

What is tantalum?

Tantalum is a metal element, element symbol is Ta, its atomic number is 73, its density is 16.68g/cm, and its melting point is 2980 DEG C, which is the third most refractory metal. Pure tantalum has a blue color, and excellent ductility, and can be rolled into a very thin plate in the cold state without intermediate annealing.

tantalum

The corrosion resistance of tantalum is the same as that of glass. In the medium temperature (about 150 DEG C), only fluorine, hydrofluoric acid, sulfur trioxide, alkali, and some molten salts have an effect on tantalum. Tantalum is stable at room temperature, it will accelerate oxidation to produce Ta205 if heated to 500 DEG C.

Tantalum has a series of excellent properties such as high melting point, low vapor pressure, and cold processing performance, high chemical stability, anti-corrosion ability, constant liquid metal oxide film, has important applications in electronics, metallurgy, the chemical industry, iron and steel, hard alloy, atomic energy, superconducting technology, automotive electronics, aerospace, medical health and scientific research and other high-tech fields.
What is niobium?

What is Niobium?

Niobium is a rare high melting point metal. The melting point is 2467 degrees, the density is 8.6g/cm3, and the lattice type is body-centered cubic. The coefficient of linear expansion (0~100 C) is 7.1 x 10-6. Adding a small amount of niobium into a steel can greatly improve the strength of steel, improve the mechanical and welding properties of steel, and improve its corrosion resistance.

Niobium can be used as a capacitor and niobium-based superalloy. FS – 85 alloy is a structural material for the orbiting engine on the shuttle. C – 103 alloy can be used as a rocket nozzle material. Other niobium alloys, such as Nb – Zr, Nb – Ti, Nb – Ti – Ta, can be used as superconducting materials, and are widely used in magnetic resonance medical human images.

Niobium-based compounds and complexes can be used as catalysts to remove pollution, selective oxidation, and hydrogenation.

Is tantalum the same as niobium?

No. Tantalum and niobium are transition metals that are commonly found together in nature. They have very similar physical and chemical properties. Their properties of hardness, conductivity, and resistance to corrosion largely determine their primary uses today.
The reason for the similarity between niobium and tantalum is the size which is the result of the lanthanide contraction. Thus, the niobium and tantalum have the same size and due to the same size, tantalum and niobium have the same ionic and covalent radii.

Conclusion

Tantalum is chemically much like niobium because both have similar electronic configurations and because the radius of the tantalum ion is nearly the same as that of niobium as a result of the lanthanoid contraction. Niobium is a lustrous, gray, ductile metal with a high melting point, relatively low density, and superconductor properties. Tantalum is a dark blue-gray, dense, ductile, very hard, and easily fabricated metal. It is highly conductive to heat and electricity and renowned for its resistance to acidic corrosion.

Stanford Advanced Materials produce our tantalum products from the metal powder to the finished product. We only use the purest tantalum powder as the source material. This is how we can guarantee you a very high material purity.
We guarantee a purity of 99.95% for our sintered quality tantalum (metallic purity without Nb). The remaining portion is made up primarily of the following elements according to a chemical analysis:

Element Typical max. value
[μg/g]
Guaranteed max. value
[μg/g]
Fe 17 50
Mo 10 50
Nb 10 100
Ni 5 50
Si 10 50
Ti 1 10
W 20 50
C 11 50
H 2 15
N 5 50
O 81 150
Cd 5 10
Hg 1
Pb 5 10

Is Tantalum Worth More Than Gold?

Why is tantalum so valuable?

The most valuable of metal worth materials is not gold or platinum like you might expect, but a metal you’ve possibly never heard of: tantalum.

There’s a good reason for this.

tantalum

The rarest stable element- Tantalum

As you know, Tantalum is the rarest stable element in our entire solar system, with just one atom of tantalum for every 181 billion atoms of other elements.

Tantalum is a lithophile element with chalcophile affinities. Tantalum is almost exclusively found in complex oxide and hydroxide minerals, with the exception of the borate mineral behierite and the only known non-oxide, tantalum carbide TaC.

Common Ta minerals include tantalite (Fe,Mn)(Ta,Nb)2O6, formanite YTaO4, and mikrolithe. Tantalum is nearly always found in association with Nb. The most common host minerals for Ta in igneous rock types include pyroxene, amphibole, biotite, ilmenite, and sphene.

Excellent characteristics- Tantalum

Tantalum has a series of excellent characteristics such as a high melting point, low vapor pressure, good cold processing performance, high chemical stability, strong resistance to liquid metal and acid and alkali corrosion, and large dielectric constant of the surface oxide film, which makes it an important modern functional material.

Extremely good corrosion resistance – Tantalum

Tantalum rapidly generates a surface oxide film that closely covers its metallic substrate in almost any environment, which is extremely thin and dense, impervious to almost all media, and self-healing once damaged. Thanks to this excellent protective film, tantalum has extremely good corrosion resistance. Except for fluorine, hydrofluoric acid, acidic solutions containing fluorine ions, fuming nitric acid, and strong alkalis, tantalum is impervious to corrosion in most media.

Wide Applications – Tantalum

With its combination of specific physical and chemical properties, tantalum is an important product in many applications:

tantalum applications
Tantalum features a high degree of biocompatibility. For this reason, it is used in medical technology as a radiographic contrast agent and in the production of bone replacement material and implants.
• In the aerospace and energy industries, tantalum increases the corrosion resistance of alloys in turbine blades.
• Tantalum’s chemical corrosion and high-temperature resistance properties provide many benefits to the chemical process industry. For this reason, tantalum is used in the production of reactor coatings, heat exchangers, and pipelines
• Its ability to form an extremely thin oxide coating which provides a protection layer, makes tantalum the material of choice in the production of small, high-quality capacitors

In conclusion

We use our “unyielding” material – Tantalum, for example, tantalum foil, and tantalum powder, are used to produce heat exchangers for the equipment construction sector, charge carriers for furnace construction, implants for medical technology, and capacitor components for the electronics industry.

Preparation of Tantalum Metal Powder

Preparation methods of tantalum

Smelting method: Tantalum and niobium ore is often accompanied by a variety of metals, and the main steps of tantalum smelting are decomposition of the concentrate, purification, and separation of tantalum and niobium to produce pure compounds of tantalum and niobium, and finally the metal.

Preparation of Tantalum

Ore decomposition can be used hydrofluoric acid decomposition method, sodium hydroxide melting method and chlorination method, etc. Separation of tantalum and niobium can use a solvent extraction method, step-by-step crystallization method, and ion exchange method.

Separation: Firstly, the tantalum-niobium iron ore concentrate is decomposed with hydrofluoric acid and sulfuric acid tantalum and niobium are dissolved in the leaching solution as fluorotantalic acid and fluoronobotic acid, while the associated elements such as iron, manganese, titanium, tungsten, and silicon are also dissolved in the leaching solution, forming a strongly acidic solution with a very complex composition.

The tantalum-niobium leach solution is extracted with methyl isobutyl ketone and extracted into the organic phase at the same time, and the organic phase is washed with a sulfuric acid solution to obtain the pure organic phase containing tantalum-niobium and the extracted residue combined, which contains trace tantalum-niobium and impurity elements, and is a strongly acidic solution, which can be recovered comprehensively.

The pure organic phase containing tantalum-niobium is back-extracted with a dilute sulfuric acid solution to obtain the organic phase containing tantalum. Niobium and a small amount of tantalum enter the aqueous phase and then the tantalum is extracted with methyl isobutyl ketone to obtain a pure niobium-containing solution.

The pure organic phase containing tantalum is then back-extracted with water to obtain a pure tantalum-containing solution. The organic phase after the reverse tantalum extraction is returned to the extraction cycle.

Pure tantalum fluoride solution or pure niobium fluoride solution reacts with potassium fluoride or potassium chloride to form potassium tantalum fluoride (K₂TaF₇) and potassium niobium fluoride (K₂NbF₇) crystals, respectively, and can also react with ammonium hydroxide to form tantalum hydroxide or niobium hydroxide precipitates. Tantalum or niobium hydroxide is calcined at 900~1000°C to produce tantalum or niobium oxide.

Preparation of tantalum.

Tantalum metal powder can be produced by the thermal reduction of metal (sodium thermal reduction) method. The reduction of potassium fluorotantalate with sodium metal in an inert atmosphere: K2TaF7+5Na─→Ta+5NaF+2KF. The reaction is carried out in a stainless steel tank, and the reduction reaction is rapidly completed when the temperature is heated to 900℃. The tantalum powder made by this method is irregular in particle shape and fine in size, which is suitable for making tantalum capacitors.

Tantalum metal powder can also be made by electrolysis of molten salt: using the molten salt of potassium fluorotantalate, potassium fluoride, and potassium chloride mixture as the electrolyte to dissolve tantalum pentoxide (Ta2O5) in it, and electrolysis at 750℃, tantalum powder with a purity of 99.8~99.9% can be obtained.

Tantalum metal can also be obtained by reducing Ta2O5 with carbon heat. Reduction is generally carried out in two steps: first, a certain ratio of Ta2O5 and carbon mixture in a hydrogen atmosphere at 1800 ~ 2000 ℃ to make tantalum carbide (TaC), and then TaC and Ta2O5 in a certain ratio of the mixture of vacuum reduction into tantalum metal.

Tantalum metal can also be produced by thermal decomposition or hydrogen reduction of tantalum chloride. Dense tantalum metal can be prepared by vacuum arc, electron beam, plasma beam melting, or powder metallurgy. High-purity tantalum single crystals are produced by crucible-free electron-beam regional melting.