Tantalum Capacitors VS Ceramic Capacitors

The function of capacitors is to remove the crosstalk of various high-frequency signals generated by the chip itself to other chips so that each chip module can work normally without interference. In the high frequency electronic oscillating circuit, the SMT capacitance and crystal oscillator together form an oscillating circuit to provide the required clock frequency. Its main chemical components are nickel and chromium, and the shape is filamentous, so it is called nickel-chromium wire.

tantalum capacitors

Ceramic capacitors

Ceramic capacitors are made by high dielectric constant capacitor ceramics, which are extruded into tubes, wafers, or disks as the medium. It is divided into two types: high-frequency porcelain medium and low-frequency porcelain medium. Low-frequency ceramic dielectric vessels are limited to those occasions where they are used as by-passes or dc insulation in circuits with lower operating frequencies, or where stability and loss requirements are not high. Such capacitors are not suitable for use in pulse circuits because they are vulnerable to breakdown by impulse voltage.

Ceramic Capacitors

Tantalum Capacitors

Tantalum capacitors are characterized by long life, high-temperature resistance, high accuracy and excellent performance of the high-frequency filter. Tantalum capacitors can generally withstand high temperature and voltage and are often used for high-frequency filtering. Ceramic capacitors look a bit like patch resistors, but they are smaller in capacity and more expensive than aluminum capacitors and have relatively low voltage and current resistance.

Compared with ceramic capacitors, tantalum capacitors on SMT are labeled with capacitance and pressure resistance, and the surface color is usually yellow and black. SMT aluminum electrolytic capacitors have a larger capacity than SMT tantalum capacitors, which is more commonly seen on the display card, with a capacity between 300 VPS F and 1,500 VPS F.

Tantalum_capacitors
Tantalum Capacitors

The difference between tantalum capacitors and ceramic capacitors

They are made of different materials. As the name implies, tantalum capacitors use tantalum as the medium, while ceramic capacitors use ceramics as the medium. The capacitance of ceramic capacitors is much smaller than that of tantalum capacitors. Tantalum electrolytic capacitors can achieve a small capacitance, while the ceramic capacitor can hardly achieve the ideal performance when the capacitance is large.

Tantalum capacitors and ceramic capacitors also have different uses. Tantalum capacitors can be used as coupling, and the frequency range of such circuits as filter oscillatory bypass is large, while ceramic capacitors are mostly used in high-frequency circuits. Since tantalum capacitors are mainly made of tantalum, a very rare metal, so the capacitor grade tantalum powder is very expensive, while tantalum capacitors are sold at a high price and generally used only in high-end products that are not price-sensitive.

Multilayer ceramic capacitors are now the most widely used in almost all electronic products. In recent years, the capacity of ceramic capacitors has become larger and larger with the continuous progress of technology, and 47UF multi-layer ceramic capacitors have emerged. However, the large-capacity ceramic capacitors can only be made by a few big Japanese brands, so the price is still more expensive, which is similar to the price of tantalum capacitors.

Please visit http://www.samaterials.com for more information.

Where Can We Find Tantalum Metal?

Tantalum metal mainly exists in tantalite ore and is symbiotic with niobium. Tantalum is of moderate hardness and ductility and can be drawn into tantalum wire or tantalum foil. Tantalum has a wide range of applications due to its characteristics, and it widely exists in tantalite, tantalum alloy, tantalum powder, tantalum capacitors, etc.

tantalum alloy

Tantalum alloy is an alloy based on tantalum adding other elements. The tantalum anode oxide film is stable and corrosion-resistant. It has excellent dielectric properties and is suitable for making the electrolytic capacitor. Tantalum is highly resistant to chemical corrosion. Except for hydrogen fluoride, sulfur trioxide, hydrofluoric acid, hot concentrated sulfuric acid and alkali, tantalum can resist the corrosion of all organic and inorganic acids. Therefore, it can be used as corrosion resistant materials for chemical industry and medicine.

Tantalum alloy

As tantalum is similar to some rare elements such as uranium, thorium, rare earth, titanium, zirconium, tungsten, and common elements tin, calcium, iron, and manganese in crystalline chemistry, it is easy to have equivalence and heteromorphism.

The compact oxide film formed on the surface of metallic tantalum has the properties of valve metal of unidirectional conduction. The anodic film made of tantalum powder has chemical stability (especially in acidic electrolyte stability), high resistivity (7.5 x 1010 Ω, cm), dielectric constant (27.6) and small leakage current. Tantalum is not only the raw material for the production of pure metal tantalum but also used in the electronics industry. Lithium tantalate monocrystals and special optical glass with high refraction and low dispersion can be used as a catalyst in the chemical industry.

Tantalum oxide is a white powder insoluble in water and acids, but soluble in molten potassium bisulfate and hydrofluoric acid. The minerals containing tantalum and niobium are mainly iron tantalum and calcined greenstone. The ones containing more tantalum are called tantalite, while the ones containing more niobium are called niobite.

tantalum capacitor

The design of tantalum capacitors requires that the product performance parameters of tantalum capacitors can meet the circuit signal characteristics. However, it is often impossible to guarantee that the above two tasks are done well. Therefore, it is inevitable that failures of one kind or another will occur in the process of use. The solid tantalum capacitors were first developed in 1956 by Bell Laboratories in the United States. Tantalum capacitors can easily obtain large capacity, and there are few competitors in power filter, ac bypass, and other applications.

Stanford Advanced Materials supplies high-quality tantalum and related products to meet our customers’ R&D and production needs. Please visit http://www.samaterials.com for more information.

What are the Main Properties of Tantalum and Niobium Materials?

Rare metal material technology is one of the most important subjects in the field of material science and engineering in the new century, as well as a key material for the development of high and new technology, and tantalum and niobium play an important role in this field. The development of modern high technology such as information technology, new energy technology, space technology, biotechnology, and superconductivity is closely related to rare metal materials, especially tantalum and niobium.

superconducting devices

Main products and performance

At present, the main products used in the tantalum-niobium industry include tantalum powder, tantalum wire, tantalum carbide, tantalum, and its alloy ingots, tantalum and its alloy processing materials, tantalum target materials, tantalum oxide, lithium tantalite; niobium powder, niobium rod, niobium foil, and its alloy ingots, niobium and its alloy additives, niobium oxide, niobium tube, lithium niobate, niobium, and its alloy superconducting materials, etc.

tantalum capacitors

Tantalum powder and tantalum wire are the key materials for making tantalum capacitors, which are widely used in mobile phones, computers, digital products, automobiles, aerospace electronics, and other fields. About 60 percent of the world’s tantalum is used to make tantalum capacitors.

Tantalum and niobium target materials are used in semiconductor devices and liquid crystal display technologies, and niobium oxide, niobium powder, and niobium wire are used in making ceramic and niobium capacitors. About 90% of the world’s niobium is used in the steel industry, and niobium wire is mainly used in the production of high-strength low-alloy steel, stainless steel, heat-resistant steel, clearance steel, carbon steel, tool steel, rail steel, casting steel.

Superalloys can be produced by adding tantalum or niobium to tungsten, molybdenum, nickel, cobalt, vanadium, ferroalloys, or by using tantalum and niobium as bases, which are important structural materials for aerospace engines, ground-based air turbine engines, modern weapons, and harsh industrial environment facilities.

Because of the good superconductivity of niobium and tantalum metal, the addition of niobium and tantalum into the materials used to make wires and cables can greatly reduce the loss of power and thus save power. Tantalum and niobium are excellent materials for acid and liquid metal corrosion resistance, so they can be used in the chemical industry for digesters, heaters, coolers, and various device containers. Besides that, tantalum and niobium metals and their alloys can also be used as reactor shell materials and high-energy physics superconducting devices.

superconducting devices

Industry’s outlook

With the development of high and new technology in the world, such as electronics, metallurgy, aerospace, and aviation, the international market demands for the smelting and processing of rare metals such as tantalum powder and tantalum wire, tantalum niobium crystal materials and niobium alloy are increasing day by day. Currently, major tantalum and niobium metal smelters and processing industries around the world are carrying out global economic integration, and actively exploring the market to improve the market share.

Stanford Advanced Materials supplies high-quality tantalum and niobium products to meet our customers’ R&D and production needs. Please visit http://www.samaterials.com for more information.

How do tantalum products work in modern industry?

Capacitor tantalum powder

Tantalum electrolytic capacitor is an electronic device that takes tantalum as a metal anode and generates dielectric oxide film on the tantalum surface by anodic oxidation. The most important difference between tantalum capacitors and other types of capacitors is the quality of the tantalum oxide dielectric film, which has a high dielectric constant and breakdown voltage.

Generally speaking, the higher the purity of tantalum powder, the higher the breakdown voltage of the tantalum capacitor anode film. The tantalum powder has a high specific surface area, which can be remained even after compaction and sintering due to its special pore structure.

tantalum powder

Apart from the tantalum powder, tantalum foil is also used in foil capacitors, and tantalum wire is used as capacitor anode lead. In 2000, the annual output of tantalum capacitors reached 25 billion tons, requiring 800 tons of tantalum powder and nearly 150 tons of tantalum wire. Excellent performance such as high reliability and compactness, high efficiency, and long shelving time make tantalum capacitors be used in the instrument and control system of computers, communication systems, aircraft, missiles, ships, and weapon systems.

Tantalum and its alloys

The alloying of tantalum or tantalum-based alloy is usually carried out in the electron beam furnace. In order to obtain the ingot with uniform composition, vacuum arc remelting (VAR) is required after the smelting and purification in the electron beam furnace. All tantalum and tantalum alloy products are processed by electronic beam casting, and the use of vacuum arc remelting depends on the use of the product.

Tantalum alloy has the lowest ductile-brittle transition temperature, good low-temperature ductility, small work hardening coefficient, and excellent high-temperature strength, which is an ideal structural material for working under 1600-1800 ℃. At present, Ta-W and Ta-Nb alloy materials are mainly used in the manufacture of aerospace industry and space nuclear power system components.

Tantalum alloys

Other applications of tantalum

At present, the global annual consumption of tantalum is about 900 tons. The electronics industry is the largest and most promising application of tantalum, accounting for an estimated 66% of total consumption; the second application of tantalum is in the cutting tool industry, which accounts for 22 percent of total consumption; tantalum, as a superalloy high temperature strengthening additive, accounts for 6% of the total consumption; tantalum and tantalum alloy account for 3% of total consumption in valves, heat exchangers and plug-in heaters of chemical industries. As a biological material, tantalum is highly compatible with body fluids. In thoracic surgery, tantalum U nail is used to close vessels and arteries without an allergic reaction, and medical fields such as holes used to seal the skull during craniotomy account for about 1% of tantalum use. The other 2% of tantalum is used for military purposes.

Stanford Advanced Materials supplies high-quality tantalum products to meet our customers’ R&D and production needs. Please visit http://www.samaterials.com for more information.

Overview of the Metal Tantalum

Tantalum is a kind of refractory nonferrous metal with a hardness of 6-6.5. Its melting point can reach 2996 ℃, which is second only to tungsten and rhenium. Tantalum is malleable and can be drawn into thin foil, and it has a very small coefficient of thermal expansion, which is only 0.6 percent for every degree rise.

metal tantalum

Tantalum also has excellent chemical properties and is highly resistant to corrosion. Tantalum does not react with hydrochloric acid, concentrated nitric acid, and aqua regia under both cold and hot conditions. The experiments showed that tantalum did not react with the alkali solution, chlorine gas, bromine water, dilute sulfuric acid, and many other agents at room temperature, but only with hydrofluoric acid and hot concentrated sulfuric acid, which is relatively rare in metals.

Tantalum

Tantalum has a wide range of applications due to its excellent performance. For example, tantalum can be used as a substitute for stainless steel in the production of various inorganic acids. Besides that, tantalum can replace tasks that used to be undertaken by precious metal platinum in chemical, electronic, electrical, and other industries, thus greatly reducing the cost. Tantalum is manufactured into capacitor equipment for military use, and half of the world’s production of tantalum is used in tantalum capacitors. America’s military industry is unusually advanced, and it is the world’s largest arms exporter. The Defense Logistics Agency, the largest owner of tantalum, once bought a third of the world’s tantalum powder.

Tantalum is a kind of stable anodic oxide film in the acidic electrolyte. The electrolytic capacitor made of tantalum has the advantages of large capacity, small volume, and good reliability. Capacitor making is the most important use of tantalum, and the consumption of tantalum accounts for more than 2/3 at the end of the 1970s. Tantalum is also used to make electronic transmitter tubes and high-power tube parts. Moreover, Tantalum metal can be used as the structure of the combustor of the aircraft engine.

Tantalum and its alloys are widely used in all walks of life. Tantalum and tantalum-hafnium alloys are often used as heat-resistant, high-strength materials for rockets, missiles, and jet engines, as well as components for control and adjustment equipment. Tantalum is easy to be processed and shaped, so it is used as supporting accessories, heat shield, heater, and radiator in the high-temperature vacuum furnace. Tantalum carbide is used to make cemented carbide.

Boride, silicified, and nitride alloys of tantalum are used as heat release elements and liquid metal sheathing materials in the nuclear industry. Tantalum oxide is used in the manufacture of advanced optical glass and catalysts. In 1981, tantalum was consumed by about 73% of electronic components, 19% of the machinery industry, 6% of transportation, and 2% of the rest.

Stanford Advanced Materials supplies high-quality tantalum products to meet our customers’ R&D and production needs. Please visit http://www.samaterials.com for more information.